Sugden Lab.

Ethanol precipitation

- Add the appropriate volume of salt stock solution and mix well. Add 2.5~3.0 volume of ice-cold 100% ethanol and mix well.
 Note: Addition of 1 μl of 20~25 μg/μl glycogen should increase the precipitation efficiency.
- 2. Store the ethanolic solution on ice for 15~30 min (or at -80°C for 5~10 min) to allow the precipitaiton to form.
- 3. Centrifuge mixture for 10 min at 4°C.
- 4. Aspirate the supernatant and wash the pellet in 1 ml 70% ethanol.
- 5. Centrifuge at 15,000 rpm for 10 min at 4°C.
- 6. Aspirate supernatant and dissolve pellet in the desired volume of the appropriate buffer or dH₂O.

-Note: One volume of isopropanol may be used in place of ethanol.

Salt Solution

	Stock (M)	Final concentration (M)
Ammonium acetate	10.0	2.0~2.5
Lithium Chloride	8.0	0.8
Sodium chloride	5.0	0.2
Sodium acetate	3.0 (pH 5.2)	0.3

Extraction of DNA with Phenol/Chloroform

- 1. Add an equal volume of phenol:chloroform (1:1) to the nucleic acid sample in a 1.5 ml microcentrifugation tube.
- 2. Mix the contents of the tube vigorously until an emulsion form.
- 3. Centrifuge the mixture at 12,000 x g for 15 sec. at r.t.
- 4. Transfer the aqueous phase (the upper phase) to a fresh tube.
- 5. Repeat step 1 through 4 until no protein is visible at the interface of the organic and aqueous phases.
- 6. Add an equal volume of chloroform and repeat step through 4.
- 7. Recover the nucleic acid by ethanol precipitation.

Equilibration of phenol

- 1. Allow phenol to r.t., melt it at 68°C and add hydroxyquinoline to a final concentration of 0.1%.
- 2. To a melted phenol add an equal volume of 0.5 M Tris-HCl pH 8.0, and stir the mixture on a magnetic stirrer for 15 min. When two phases have separated, aspirate as much as possible of the upper aqueous phase.

Last Modified 07/19/05

Sugden Lab.

- 3. Add an equal volume of 0.1 M Tris-HCl pH 8.0 to the phenol. Stir for 15 min and remove the upper aqueous phase. Repeat the extractions until the pH of the phenolic phase is >7.8.
- 4. Remove the final aqueous phase and add 0.1 volume of 0.1 M Tris-HCl pH 8.0 contains 0.2% β -mercaptoethanol. The solution may be stored in a light-tight bottle at 4°C up to 1 month.

Phenol:Chloroform (1:1)

- 1. Allow phenol to r.t., melt it at 68°C and add hydroxyquinoline to a final concentration of 0.1%.
- 2. Mix the equal volume of chloroform to a melted phenol.
- 3. Add an equal volume of 0.5 M Tris-HCl pH 8.0, and stir the mixture on a magnetic stirrer for 15 min. When two phases have separated, aspirate as much as possible of the upper aqueous phase.
- 4. Add an equal volume of 0.1 M Tris-HCl pH 8.0 to the phenol. Stir for 15 min and remove the upper aqueous phase. Repeat the extractions until the pH of the phenolic phase is >7.8.
- 5. Remove the final aqueous phase and add 0.1 volume of 0.1 M Tris-HCl pH 8.0 contains 0.2% β -mercaptoethanol. The solution may be stored in a light-tight bottle at 4°C up to 1 month.

Phenol:Chloroform:Isoamyl Alcohol (25:24:1)

To the equilibrated phenol, add the appropriate volume of chloroform and isoamyl alcohol so that the ratio of volume becomes 25:24:1.